亚洲国产精彩中文乱码av,国产精品-区区久久久狼,国产精品久久久久久久久久直播,扒开她粉嫩的小缝的a片

撥號18861759551

你的位置:首頁 > 技術文章 > 如何測量您的成像系統(tǒng)中的景深

技術文章

如何測量您的成像系統(tǒng)中的景深

技術文章

Gauging Depth of Field in Your Imaging System

Over the years, we have answered countless questions regarding lens performance. Of those questions, none have been more difficult to define than requests for depth of field. The reason for this difficulty has more to do with the vagueness of the question than with the inability to provide a measured or calculated value. Consider for a moment what depth of field ls us. It is the distance by which an object may be shifted before an unacceptable blur is produced. For depth of field to be properly stated, it should contain not only the displacement of an image, but also a specific resolution. The depth of field specification is further complicated by a type of keystoning aberration that often occurs. This result can dramatically affect linear measurements and therefore render depth of field unusable. In this article we will take a closer look at depth of field calculations and compare them to physical measurements using the DOF 1-40 depth of field gauge. The gauge, as we will see later, offers a unique look at what depth of field really means and how we as system designers may wish to quantify this parameter. A simple geometric approximation for depth of field is shown in Figure 1.0. The linear blur (required resolution) Bp, Bm and Bf can be expressed in terms of angular blur by the following equation.

Figure 1

 

Using similar triangles, a relationship can now be made between angular blur and the focus point,

where λ is the aperture of the lens. Solving for δplus and δmin,

The derivation above is very specific to the intended resolution. However, many theoretical derivations of depth of field often assume the lens resolution to be nearly diffraction limited. The most popular of these derivations are based on microscope applications. A typical example for the total depth of field (dplus + dmin) is shown below.

Where λ is the wavelength and NA equals the numerical aperture of the lens.

In order to study depth of field we have put together a simple macro system consisting of a 25mm fixed focal length lens, 8mm spacer and Sony XC-75 monochrome CCD video camera. The system was chosen not for its performance but rather for its common real world implementation. Measurements were performed using the DOF 1-40 target. The target allows us to measure depth of field at either 1, 10, 20 or 40 lp/mm over a maximum depth of 50mm. The flat field resolution of this system is approximay 15 lp/mm at 0.3X primary magnification. For purposes of our experiment, a blur spot resolution of 0.1 mm or 10 lp/mm was chosen. Depth of field measurements were taken at three aperture settings corresponding to f/2, f/4, and f/8. An important point should be noted about aperture settings. The f-number shown on most fixed focal length lenses is calculated with the object at infinity. As a result, we have adjusted our NA and therefore our aperture values for a 95mm working distance.

The values below highlight a number of points to consider. In general our calculated and measured delta d are fairly close. However, the displacement of the image due to defocus aberrations was not predicted by our calculations. This type of displacement error could certainly be problematic if the system contained an auto iris. If we compare our measured results to the delta-theory, we notice a significant variation. As we mentioned earlier, this variation is due to a false assumption concerning system resolution.

Another property that should be noted in our DOF 1-40 observations is the non-uniform magnification seen through the depth of field range. This is a very common problem in most lenses and, as we stated earlier, can yield significant errors if measurements are made throughout the full depth of field range. Edmund Optics provides several ecentric options to correct for this type of error.

In the end, it is the total performance of an optical system that counts. As a full service supplier and manufacturer of optics, illumination, CCD cameras, monitors, mounting, and electronic imaging related products, Edmund Optics has the knowledge and resources to look at your application as a total system. In fact, innovative tools such as the DOF 1-40 have come about from our own in-house need to quantify system performance. So if you are looking for individual components that can be integrated into your system or starting from scratch, our engineers are ready to help.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
亚洲日韩中文字幕无码一区| 成人精品视频99在线观看免费| 国产精品videossex久久发布| 变态老师的性调教高h| 中文字幕人妻色偷偷久久| 免费毛儿一区二区十八岁| 我和子的与子乱视频| 免费夜色污私人影院在线观看| 中文字幕aⅴ人妻一区二区| 亚洲精品成a人在线观看| 亚洲色无码a片一区二小说| 爆乳2把你榨干哦ova在线观看| 免费毛儿一区二区十八岁| 一个人在线观看www免费视频| 大屁股熟女一区二区三区| 欧美《熟妇的荡欲》在线观看| 亚洲 自拍 另类 欧美 综合| 亚洲久热无码av中文字幕| 国产成人无码一区二区三区在线 | yyyy111111少妇影院| 亚洲一区二区自偷自拍另类| 乌克兰少妇xxxx做受| 国产色视频一区二区三区| 天堂8在线天堂资源bt| 与亲女洗澡时伦了视频| yyyy111111少妇影院| 青青河边草直播免费观看| 啦啦啦www在线观看免费视频| 久久久久亚洲精品无码蜜桃 | 国产在线无遮挡免费观看 | 99riav国产精品视频| 亚洲国产精品久久久久婷婷老年 | 日本少妇又色又爽又高潮| 天干天干天夜夜爽啪啪免费网站| 中文av人妻av无码中文| 色欲av亚洲一区无码少妇| 高中女学生破苞视频免费| 无套内谢少妇毛片a片软件| 人妻夜夜爽天天爽| 日产精品码2码三码四码区别| 无码一区二区三区在线观看|